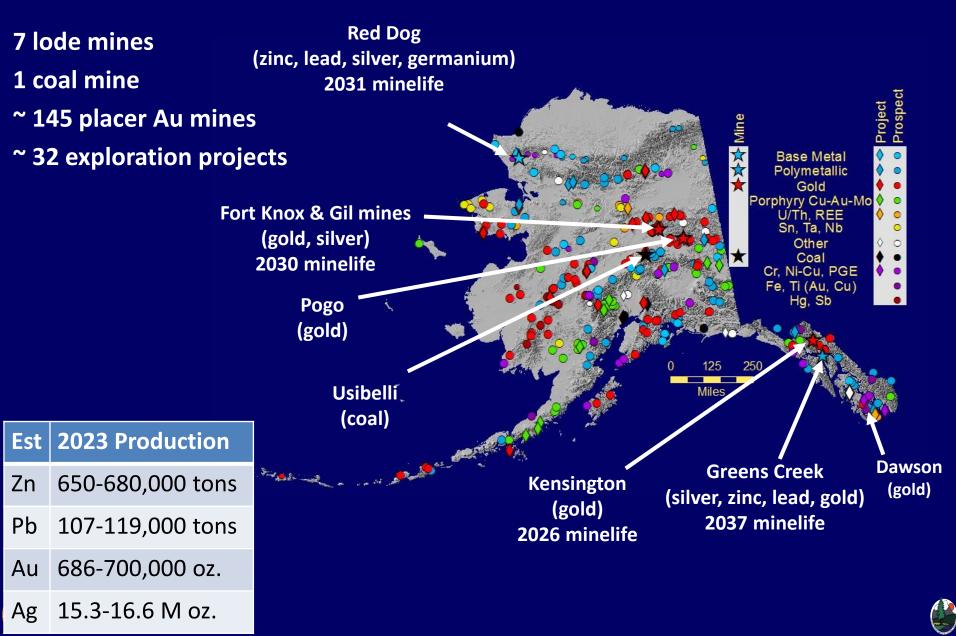


1:30 to 2:30 p.m.

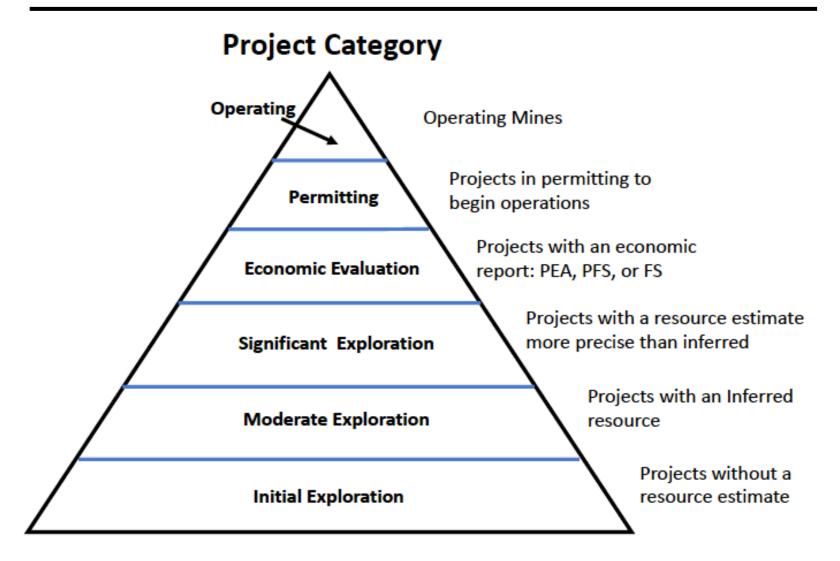
20-year outlook for Alaska's hard rock mining industry

Tentative Oct. 25

2 to 3 p.m.


Building a cultural corridor

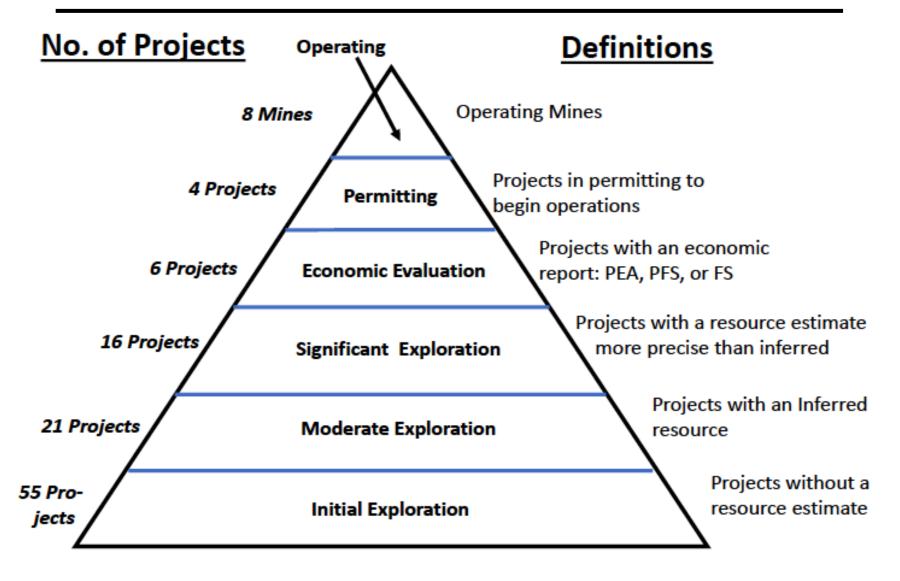
20-year outlook for Alaska's hard rock mining industry


1:30 to 2:30 p.m.

- Bob Loeffler, Research Professor, UAA's Institute of Social and Economic Research
- Brett Watson, Assistant Professor of Economics, UAA's Institute of Social and Economic Research
- Dave Szumigala, Geologist IV, Alaska Division of Geological & Geographical Surveys
- Moderator: Dan Robinson, Research Chief, Research and Analysis

2023 Alaska Mines & Mineral Production

The Mine Development Pyramid



The Odds of Succeeding: Academic Literature

Table 1. Exploration Projects to Operating Mines: Data from Literature

Original Data Source	BCMC ¹	Cominco ²	RTZ ¹	SOQUEM ³	Potter ⁴	Sykes/Trench ⁵
Time Frame of Study		40 yrs.		10 yrs.	20 yrs.	
Operating Mines	1	18*	1	3	6	66
Projects with Economic Evaluation	5		1		8	92
Significant/Moderate Exploration	60	78	10	192	67	664
Recon/Initial Exploration	1649	1000	3000		159	2870

The Mine Development Pyramid

Alaska's Operating Mines

Table 2. Operating Mines

	Primary	Resource	
Mine	Minerals	(in Short Tons)	Employment
Red Dog	Zinc, Lead	75,397,000	700
Pogo	Gold	21,306,000	450
Kensington	Gold	6,465,000	383
Greens Creek	Zinc, Lead, Silver, Gold	21,213,000	426
Fort Knox	Gold	571,654,000	6 55
Usibelli	Coal	450,000,000	100
Dawson	Gold	1,000,000	50
Calder	Limestone	Unknown	12

Alaska: Mines in Permitting

Table 3. Projects in Permitting, plus those Permitted but not Operating

		Resource	Estimated
Mine	Minerals	Short Tons	Employment
Donlin	Gold	698,366,574	900
Lucky Shot	Gold	292,661	76
Nixon Fork	Gold	542,949	45
Wishbone Hill	Coal	14,000,000	100

Alaska: Mines with Econ Evaluation

			Resource Metric	Expected
Project	Status	Minerals	Tons	Employment
Arctic (Upper Kobuk Projects)	Feasibility	Zinc, Copper, Lead, Gold	51,299,303	378
Bokan Mountain	PEA	Rare Earth	6,435,000	118
Golden Summit	PEA	Gold	146,561,808	299
Graphite Creek	PEA	Graphite	113,360,000	269
Money Knob (Livengood)	Pre-Feasibility	Gold	637,334,353	331
Palmer	PEA	Zinc, Copper, Gold	15,731,066	94

Table 4. Projects with a PEA, PFS, or FS

Recently completed: Korbel

PEA

Gold

MINERAL INDUSTRY MARKETS

Brett Watson

Assistant Prof of Applied and Natural Resource Economics

ISER/UAA

By-products metals and minerals have higher price volatility

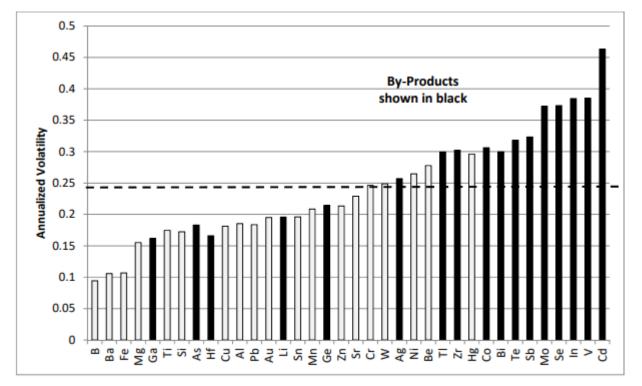


Figure 3. Historical Volatility of Annual Metal and Mineral Prices, 1960 - 2013. The dashed line represents the average volatility for this sample over this time period.

Redlinger, M., & Eggert, R. (2016). Volatility of by-product metal and mineral prices. *Resources Policy*, *47*, 69-77.

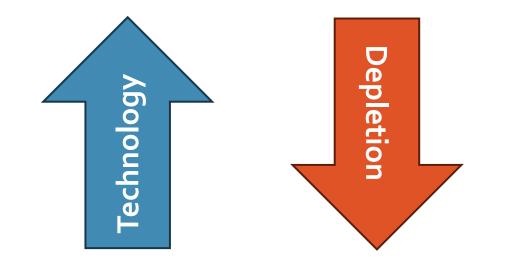

	Equation 1	Equation 2	Equation 3	Equation 4
	Volatility	Volatility	Volatility	Volatility
ByProd	0.092***			
	(0.027)			
Minor	0.015	0.012		
	(0.022)	(0.024)		
ByPartial		0.077		
		(0.046)		
ByFull		0.097***		
		(0.031)		
ByShare			0.001***	0.001***
			(0.000)	(0.000)
LnVal			0.004	
			(0.007)	
LnProd				-0.001
				(0.004)
Constant	0.188***	0.190***	0.106	0.210***
	(0.014)	(0.015)	(0.161)	(0.052)
Ν	36	36	36	36
R^2	0.327	0.330	0.321	0.314
F	8.003	5.189	6.958	6.419

Table 1 Regression Results- Volatility of USGS Annual Price Data (1960-2013)

p < 0.10, p < 0.05, p < 0.01, p < 0.01

Long run mining industry productivity

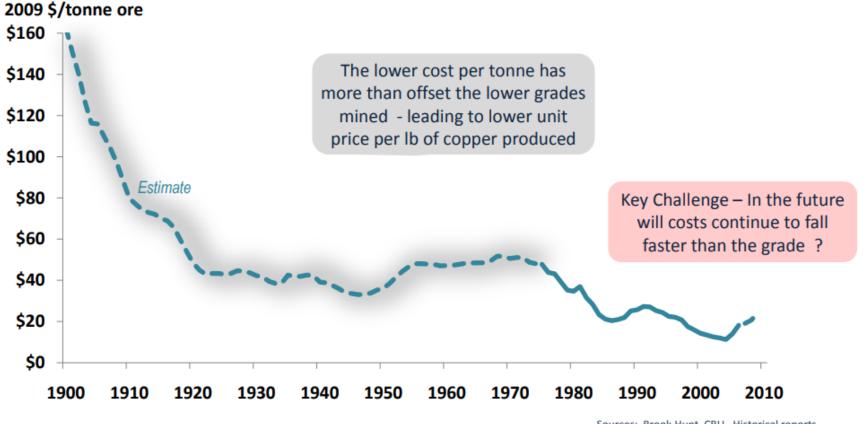
- Monotonic:
 - Technology marches forward (limited forgetting)
 - We mine the good stuff first (Herfindahl rule)

Copper case study: Tech v Depletion


Tech. Advances 2000S+ Computer controls/modelling scheduling 19905 Advanced Geologic Modeling SXEW 1950-1980 **Economies of Scale** 1900-1950 Froth Floatation Recovery Improvements **Better Smelting and Refining**

Technology

Schodde, R. (2010, March). The key drivers behind resource growth: an analysis of the copper industry over the last 100 years. In MEMS Conference Mineral and Metal Markets over the Long Term, Joint Program with the SME Annual Meeting, Phoenix, USA (Vol. 3).


Copper case study: Tech v Depletion

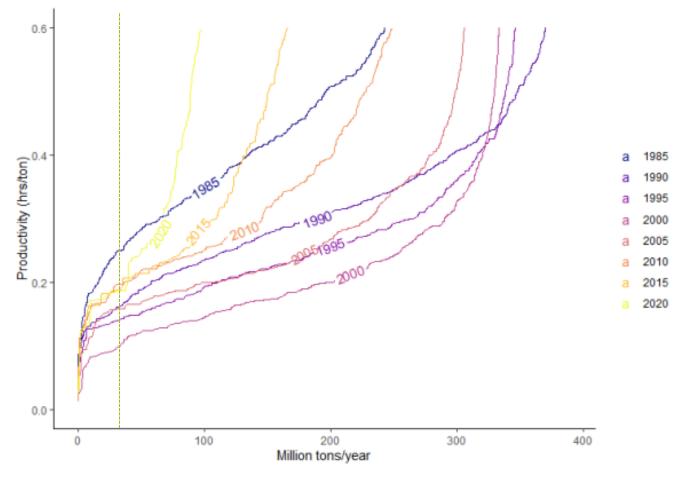
Tech. Advances 2000S+ Computer controls/modelling scheduling 19905 Advanced Geologic Modeling SXEW 1950-1980 **Economies of Scale** 1900-1950 Froth Floatation **Recovery Improvements Better Smelting and Refining**

Schodde, R. (2010, March). The key drivers behind resource growth: an analysis of the copper industry over the last 100 years. In MEMS Conference Mineral and Metal Markets over the Long Term, Joint Program with the SME Annual Meeting, Phoenix, USA (Vol. 3).

Technology winning, for now

Sources: Brook Hunt, CRU , Historical reports MinEx Consulting estimates (for 1900-1974)

Includes, transportation, smelting & refining and marketing costs


Case Study: Appalachian Coal Productivity

Line up all the mines from most productivity to least (hrs/ton, proxy for labor cost per ton) What's the productivity of the mine that produces the 25 millionth ton?

> **1985: 0.246 1995: 0.136** 2000: 0.09 **2005: 0.157** 2010: 0.183 2015: 0.183

Watson, B., Lange, I., & Linn, J. (2023). Coal demand, market forces, and US coal mine closures. *Economic Inquiry*, 61(1), 35-57.

Figure E.4: Relationship between Production and Median Productivity over Time

